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We quantify the long-time behavior of solutions to the nonlinear Boltzmann equation
for spatially uniform freely cooling inelastic Maxwell molecules by means of the
contraction property of a suitable metric in the set of probability measures. Existence,
uniqueness, and precise estimates of overpopulated high energy tails of the self-similar
profile proved in ref. 9 are revisited and derived from this new Liapunov functional. For
general initial conditions the solutions of the Boltzmann equation are then proved to
converge with computable rate as t → ∞ to the self-similar solution in this distance,
which metrizes the weak convergence of measures. Moreover, we can relate this Fourier
distance to the Euclidean Wasserstein distance or Tanaka functional proving also its
exponential convergence towards the homogeneous cooling states. The findings are
relevant in the understanding of the conjecture formulated by Ernst and Brito in refs. 15,
16, and complement and improve recent studies on the same problem of Bobylev and
Cercignani(9) and Bobylev, Cercignani and one of the authors.(11)

KEY WORDS: inelastic collisions, Maxwell models, asymptotic behavior, Fourier
metrics, Ernst-Brito conjecture

1. INTRODUCTION

This paper concerns the large time behavior of solutions of the homogeneous
Boltzmann equation for the inelastic Maxwell molecules introduced in ref. 7

∂ f

∂t
= B

√
θ (t)Q( f, f ) . (1.1)
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Here, f (v, t) is the density for the velocity space distribution of the molecules
at time t , while Q( f, f ) is the inelastic Boltzmann collision operator, which
contains the effects of binary collisions of grains. In expression (1.1), the factors
B and the temperature of f in front of Q,

θ (t) = 1

3

∫
R3

|v|2 f (v, t) dv,

allow the Maxwell model to have the same loss of temperature law of the inelastic
hard-spheres model.(7) The collision operator Q( f, f ) is more easily treated if
expressed in weak form. This corresponds to write, for every suitable test function
ϕ,

(ϕ, Q( f, f )) = 1

4π

∫
R3

∫
R3

∫
S2

f (v) f (w)
[
ϕ(v′) − ϕ(v)

]
dv dw dn. (1.2)

In (1.2) v′ is the outgoing velocity assumed by a particle in the collision
defined by the ingoing velocities v,w and the angular parameter n ∈ S2:

v′ = 1

2
(v + w) + 1 − e

4
(v − w) + 1 + e

4
|v − w|n,

w′ = 1

2
(v + w) − 1 − e

4
(v − w) − 1 + e

4
|v − w|n.

The constant 0 < e < 1 is the normal restitution coefficient.
Inelastic Maxwell models are of interest for granular fluids in spatially ho-

mogeneous states because of the mathematical simplifications resulting from their
energy-independent collision rate. For this reason, after its introduction in ref. 7,
Eq. (1.1) has been widely studied with or without energy supplies.

Easy computations show that (ϕ(v), Q( f, f )) = 0 whenever ϕ(v) = 1, v,
while (ϕ(v), Q( f, f )) < 0 if ϕ(v) = v2. This corresponds to conservation of mass
and momentum, and, respectively, to loss of energy for the solution to Eq. (1.1). For
this reason, if we fix the initial data to be a centered probability density function,
the solution will remain centered at any subsequent time t > 0.

It is well-known(6) that both elastic and inelastic Maxwell models allow one
to take advantage of the powerful Fourier transform methods. In the elastic case,
the importance of working in Fourier spaces with suitable Fourier metrics has been
first remarked in ref. 17.

Let Ps(R3) be the set of probability measures with bounded s-moment. For
any pair of probability measures in Ps(R3), the Fourier-based metrics ds , for any
s > 0, are defined as

ds( f̂ , ĝ) = sup
k∈R3

| f̂ (k) − ĝ(k)|
|k|s .
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As usual, f̂ is the Fourier transform of the density f (v),

f̂ (k, t) =
∫

R3

f (v, t)e−iv·kdv.

By simple Taylor expansion, one shows that the distance is well-defined and
finite for any pair of probability measures with equal moments up to order [s],
where [s] denotes the integer part of s. Moreover, in case s ≥ 1 be an integer,
it suffices equality of moments up to order s − 1 for being ds finite. In fact, ds

with s ≥ 2 topology is equivalent to the weak-star topology for measures plus
convergence of moments up to order [s],(21) and can be related to the Wasserstein
distance between probability measures.

Among others, one of the interesting features of granular flows, which can
be observed in the framework of Maxwellian molecules, is the existence of self-
similar solutions in the homogeneous cooling problem, and the non-Maxwellian
behavior of these solutions, which display power-like decay for large velocities.
Self-similar solutions of Eq. (1.1) are obtained through a suitable scaling of both
time and velocity (cfr. Sec. 2) in such a way that energy of the solution is conserved.
If

f (v, t) = θ− 3
2 (τ )g

(
vθ− 1

2 (τ ), τ
)
,

where

τ = B

E

∫ t

0
θ

1
2 (w) dw,

and E = 8/(1 − e2), g satisfies the equation

∂g

∂τ
= −∇v · (vg(v)) + E Q(g, g). (1.3)

Self-similar solutions (homogeneous cooling states) of the original Boltz-
mann equation correspond to stationary solutions g∞ of Eq. (1.3). Existence of sta-
tionary solutions with power-like tails has been proven by several authors.(1−3, 15)

A systematic approach to the existence of self-similar profiles for both elastic and
inelastic interactions was subsequently proposed by Bobylev and Cercignani in
ref. 9, who obtained also results of convergence towards the self-similar solution.
Later on, these results have been improved in ref. 11, by showing that convergence
towards the self-similar profile occurs for all solutions corresponding to initial
data which have more than two moments bounded.

Concerning the problem of the Boltzmann equation with an energy source,
Bobylev and Cercignani(8) found steady solutions to the inelastic Maxwell model
with a heat bath, that behave like exp(−r |v|). The problem of convergence towards
the steady solution has been subsequently dealt with in ref. 4. By means of the
strict contraction property of d2 in P2(R3), existence, uniqueness, boundedness
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of moments and regularity of the steady state have been derived. Furthermore,
explicit decay rates of general solutions towards the stationary state were obtained
in all Sobolev spaces with a rate of decay as close as the one obtained for the
contraction estimate.

The main aim of this paper is to improve in the understanding of the nonlinear
stability and convergence towards equilibrium for the self-similar problem (1.3)
based on the techniques introduced in ref. 4 for the inelastic problem and in
ref. 17 for Maxwellian molecules in the classical elastic case. We first remark
that the distance d2 is proved to be a non-strict contraction for the flow. This is a
direct consequence of the main Theorem in ref. 4. Thus, in order to get rates of
convergence we will show a strict contraction property for d2+α, 0 < α < Ḡ(e)
with Ḡ(e) > 2.

Contraction properties of d2+α allow us to revisit the existence and uniqueness
of the similarity solution, as well as various properties of the solution itself. In
particular, it will be possible to discuss in detail the conjecture on the self-similar
solution formulated by Ernst and Brito in refs. 15, 16, namely tail behavior and
rates of convergence towards equilibrium.

Concerning tail behavior: second part of the EB conjecture, we show that the
facts of the flow being contractive with Fourier distances and the homogeneous
cooling state to have a corresponding moment bounded are equivalent. More
precisely the critical exponent on the contraction estimate Ḡ(e) > 2 corresponds
exactly to the critical exponent for the unboundedness of the moment of the homo-
geneous cooling state. Then, this gives a new, we believe, elegant interpretation of
the “thick tails” results proven for the first time in ref. 9. Moreover, we will make
use of this fact to show uniform in time propagation of moments for solutions of
the Cauchy problem to (1.3) which has not been addressed before.

Concerning rates of decay: first part of the EB conjecture, although the rate of
decay in the first result in Sec. 3 coincides with the rate of convergence proved in
refs. 9, 11, we recast this result in a contractive estimate between any two solutions
with the implications discussed above. Moreover, this contraction property can be
considered as the first Liapunov functional for the equilibrium solution of (1.3)
and it gives not only convergence towards equilibrium but a measure on how any
two solutions will converge to it and then a global trend of the system.(14)

Finally, we show that the convergence of Fourier metrics imply explicit rates
of convergence of other probability metrics, in particular the Euclidean Wasser-
stein distance or Tanaka functional. These results give for the first time rates of
convergence in the “physical space.” On the other hand, we will discuss why in
this case we cannot accomplish the whole argument done in ref. 4 due to the lack
of propagation of smoothness. A result in this direction coupled with the results in
this work implies by interpolation inequalities(4,13) an explicit rate of convergence
in strong sense in Sobolev spaces. Fine overpopulated tail behavior properties of
the self-similar profile will be dealt with in Sec. 5.
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2. HOMOGENEOUS COOLING STATES: SELF-SIMILAR

VARIABLES AND MOMENT EVOLUTION

We will start our analysis with a brief resumé of some questions related to the
existence and uniqueness of homogeneous cooling states (HCS) for the inelastic
Maxwell model (1.1). Let us remind that a homogeneous cooling state is a solution
to (1.1) of the form:

fhc(v, t) = ρθ
− 3

2
hc (t)g∞

(
(v − u)θ

− 1
2

hc (t)
)

(2.1)

where θhc(t) is the second moment of fhc, that decays following the law of cooling
of the temperature for the inelastic Maxwell model (1.1) (see ref. 7):

dθ

dt
= −1 − e2

4
Bθ

3
2 . (2.2)

Here, ρ and u are the density and mean velocity of the HCS, that, as briefly
discussed in the introduction, are preserved in time and are fixed to be ρ = 1 and
u = 0 for the rest of the paper.

Scaling the temporal variable as

τ = B

E

∫ t

0
θ

1
2 (w) dw, (2.3)

where E = 8/(1 − e2), reduces Eq. (1.1) to

∂ f

∂τ
= E Q( f, f ). (2.4)

This new time-scale makes the evolution law of the temperature for (2.4) to
read as

dθ

dτ
= −2θ . (2.5)

Now, we scale with the own temperature of solutions in such a way that the
homogeneous cooling states change into stationary states in the new variables.
This is achieved through the change of variables (2.1):

f (v, τ ) = θ− 3
2 (τ )g

(
vθ− 1

2 (τ ), τ
)
. (2.6)

Substituting expression (2.6) into the Boltzmann equation, and supposing the
solution to the Boltzmann equation has enough regularity, one obtains the equation
satisfied by g(ṽ, τ ),

∂g

∂τ
+ ∇ṽ · (ṽg(ṽ)) = E

4π

∫
R3

∫
S2

[χg(ṽ∗)g(w̃∗) − g(ṽ)g(w̃)] dn dw̃. (2.7)
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As before, it is convenient to write Eq. (2.7) in weak form

d

dτ

∫
R3

ϕ(v)g(v, τ ) dv =
∫

R3

g(v)v · ∇ϕ(v) dv + E(ϕ, Q(g, g)). (2.8)

By virtue of the self-similar change of variables (2.6), the temperature cor-
responding to the distribution g(v, τ ) turns out to be equal to one independently
of time, which implies that solutions to Eq. (2.8) are normalized with unit mass,
zero mean velocity and unit temperature. Moreover, HCS for the original Eq. (2.4)
are transformed into stationary solutions g∞ of (2.8) with unit mass, zero mean
velocity and unit temperature.

The Fourier transformed equation(6,7) corresponding to (2.4) is

∂ f̂

∂τ
= E

4π

∫
S2

{
f̂ (k+, τ ) f̂ (k−, τ ) − f̂ (0, τ ) f̂ (k, τ )

}
dn (2.9)

where

k− = 1 + e

4
(k − |k|n),

k+ = 3 − e

4
k + 1 + e

4
|k|n.

(2.10)

Likewise, the Fourier transformed equation corresponding to (2.7) reads

∂ ĝ

∂τ
− (k · ∇k) ĝ = E

[
1

4π

∫
S2

ĝ(k+)ĝ(k−) dn − ĝ

]
= E [Q+(ĝ, ĝ) − ĝ] .

(2.11)

The solution to (2.11) can be written in terms of the characteristics of the
first order linear operator as

ĝ
(
τ, ke−τ

) = e−Eτ ĝ(0, k) + E

∫ τ

0
e−E(τ−s) Q+(ĝ, ĝ)

(
s, ke−s

)
ds. (2.12)

Setting ϕ(v) = viv j , i 	= j into (2.8) shows that the evolution of the second
cross moments for equation (2.8) is given by

∂

∂τ

∫
R3

g(v)viv j dv = −1 + e

1 − e

∫
R3

g(v)viv j dv. (2.13)

As a consequence, the non-isotropic part of the pressure tensor of the solutions
vanishes if initially does so.

Due to its importance in the forthcoming analysis, we need also to study the
propagation in time of higher moments of the solution to Eq. (2.8). To simplify
notations, in what follows, for any r ∈ N, we consider

M2r (g(τ )) =
∫

R3

g(v, τ )|v|2r dv,
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and we will write M2r (g(τ )) ≡ M2r (τ ) whenever there is no confusion about the
solution we discuss. We skip the details of the proof of next Lemma that are based
on [Ref. 4, Lemma 2.3] and simple computations with the anti-drift term.

Lemma 2.1. (Time-dependent moment estimates) Let g(v, τ ) be the solution
to equation (2.8), where the initial distribution g0(v) is such that M2r (g0) < +∞
for some r > 1. Then, M2r (τ ) satisfies the following differential inequality

d

dτ
M2r (τ ) ≤ −E

[
1 − e2r

4

(
M2r (τ ) + M2(r−1)(τ )M2(τ )

)

− 1

2

r−1∑
m=1

(
r
m

)
M2(r−m)(τ )M2m(τ )

]
+ 2r M2r (τ ). (2.14)

Consequently, M2r (τ ) < ∞, for all τ > 0, and bounded in [0, T ], for all T > 0.

3. HOMOGENEOUS COOLING STATES: EXISTENCE AND

UNIQUENESS VIA CONTRACTION

We are now in a position to show the contraction of the ds-distances for
solutions to the scaled Eq. (2.8). The main consequence of this result will be
the existence of a unique stationary state to Eq. (2.8) with unit mass, zero mean
velocity and unit pressure tensor. To simplify computations, the proof that follows
will be restricted to initial data g0 with unit mass, zero mean velocity and unit
pressure tensor, i.e., ∫

R3

g0(v)viv j dv = δi j .

We remark that the proof of the first part of the following Theorem can be
obtained by rephrasing arguments from [Ref. 9, Sec. 6] and [Ref. 11, Sec. 4].

Theorem 3.1. (Strict contraction for the scaled equation) Let ĝ1 and ĝ2 be
two solutions to (2.11) corresponding to initial values ĝ1(0), ĝ2(0) with unit mass,
zero mean velocity and unit pressure tensor, i.e.,∫

R3

g1(v)viv j dv =
∫

R3

g2(v)viv j dv = δi j . (3.1)

Then d2+α(ĝ1(0), ĝ2(0)) < ∞, 0 < α < 1, and there exists an explicit con-
stant C(α, e) > 0, C(α, e) → 0 as α → 0, such that

d2+α(ĝ1(τ ), ĝ2(τ )) ≤ d2+α(ĝ1(0), ĝ2(0))e−C(α,e)τ , (3.2)
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for any τ ≥ 0. Consequently, Eq. (2.11) has a unique steady state ĝ∞ which
belongs to the set of probability measures with unit mass, zero mean velocity and
pressure tensor given by (3.1).

Proof. We remark first that equality of all moments up to order 2 implies that the
distance d2+α, 0 < α < 1, between g1 and g2 is well-defined.

Step 1: Estimates on the distance. From Eq. (2.12) it follows:

eEτ (ĝ1 − ĝ2)(τ, ke−τ )

|k|2+α
= e(E−(2+α))τ (ĝ1 − ĝ2)(τ, ke−τ )

|ke−τ |2+α
= ĝ1(0, k) − ĝ2(0, k)

|k|2+α

+E

∫ τ

0
e(E−(2+α))s (Q+(ĝ1, ĝ1) − Q+(ĝ2, ĝ2))

(
s, ke−s

)
|ke−s |2+α

ds. (3.3)

As shown in ref. 4,∣∣∣∣ (Q+(ĝ1, ĝ1) − Q+(ĝ2, ĝ2)) (k)

|k|2+α

∣∣∣∣ = 1

4π

∣∣∣∣
∫

S2

ĝ1(k+)ĝ1(k−) − ĝ2(k+)ĝ2(k−)

|k|2+α
dn

∣∣∣∣
≤ A(α, e) sup

k∈R3

|ĝ1(k) − ĝ2(k)|
|k|2+α

(3.4)

where A(α, e) is given by

A(α, e) = 1

4π

∫
S2

|k+|2+α + |k−|2+α

|k|2+α
dn (3.5)

and A(α, e) ≤ A(0, e) = (e2 + 3)/4 < 1 for each restitution coefficient e 	= 1 (see
ref. 4). In fact, it can be checked by inserting the expressions of k− and k+ (see
(2.10)) into (3.5) that

A(α, e) = 1

2

∫ π

0



[(

1 + e

4

)2

2(1 − cos θ )

] 2+α
2

+
[(

3 − e

4

)2

+
(

1 + e

4

)2

+ 2

(
3 − e

4

)(
1 + e

4

)
cos θ

] 2+α
2


 sin θ dθ

= 2

4 + α

[(
1 + e

2

)2+α

+ 1 − (
1−e

2

)4+α

1 − (
1−e

2

)2

]
.

Hence, taking the supremum of (3.3) we obtain

e(E−(2+α))τ d2+α(ĝ1, ĝ2)(τ ) ≤ d2+α(ĝ1(0), ĝ2(0))

+A(α, e)E

∫ τ

0
e(E−(2+α))sd2+α(ĝ1, ĝ2)(s) ds.
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Let us set w(τ ) = e(E−(2+α))τ d2+α(ĝ1, ĝ2)(τ ). Then

w(τ ) ≤ w(0) + A(α, e)E

∫ τ

0
w(s) ds, (3.6)

which, by Gronwall inequality, implies w(τ ) ≤ w(0)eA(α,e)Eτ . Hence

d2+α(ĝ1, ĝ2) ≤ d2+α(ĝ1(0), ĝ2(0))e−C(α,e)τ , (3.7)

with

C(α, e) = E(1 − A(α, e)) − (2 + α) = E(1 − G(α, e)) (3.8)

where G(α, e) = A(α, e) + 1−e2

8 (2 + α).

Step 2: Strict contraction of the distance. The first part of the theorem will
follow if we show that for all 0 < α ≤ 1 and all restitution coefficients 0 ≤ e < 1,
G(α, e) < 1.

We leave the details to the reader and sketch the arguments. We first remark
that for any given e, the function G(α, e) is convex with respect to the variable α by
a direct computation of the second derivative. Now, let us point out that G(0, e) =
A(0, e) + 1−e2

4 = 1 for all e. Moreover, a detailed analysis of the behavior of the
function G(1, e) shows that G(1, e) < 1 for all e.

From this information, we can conclude that for all α such that 0 < α ≤ 1,
it holds G(α, e) < 1 in the whole interval 0 ≤ e < 1, and thus, C(α, e) is strictly
positive for all 0 < α ≤ 1 and 0 ≤ e < 1.

Step 3: Existence and uniqueness of steady state. The final part of this theorem
follows the same lines as [Ref. 4, Theorem 3.2].

Take the set Xα defined as the subset of P2+α(R3) with moments up to order 2
given by (3.1). This set is a complete metric space endowed with the distance d2+α

being a closed subset of P2+α(R3), see [Ref. 21, Theorem 1]. Let us consider the
flow map of (2.11),

Tτ : (Xα, d2+α) −→ (Xα, d2+α),

for any time τ > 0, given by Tτ (g0) = g(τ ) with g(τ ) the unique solution at time
τ of (2.11) with initial datum g0 ∈ Xα .

The first and second steps prove that Tτ is a uniform contraction from the com-
plete metric space (X α̂, d2+α) into itself with contraction constant e−C(α,e)τ < 1.
Therefore, Banach fixed point theorem ensures the existence and uniqueness of a
fixed point g∞(τ ) for Tτ in (X α̂, d2+α). A simple argument using the continuity in
time of the nonlinear semigroup solution to (2.11) implies that these unique fixed
points cannot depend on time, g∞(τ ) = g∞, for all τ ≥ 0, and the existence of a
unique fixed point follows. It remains to show that the unique fixed point g∞ ∈ Xα

is a stationary solution to (2.11). We use the argument of ref. 19. By (3.4), for all
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g ∈ Xα we have

d2+α(Q+(ĝ(τ ), ĝ(τ )), Q+(ĝ∞, ĝ∞)) ≤ A(α, e)d2+α(ĝ(τ ), ĝ∞).

This implies the weak∗ convergence of Q+(g(τ ), g(τ )) towards Q+(g∞, g∞).
In particular, due to the equivalence among different metrics which metrize the
weak∗ convergence of measures,(17,21) if C1

0 (R3) denotes the set of compactly
supported continuously differentiable functions, endowed with its natural norm
|| · ||1, for all ϕ ∈ C1

0 (R3),∫
R3

ϕ(v)Q+(g(τ ), g(τ ))(v) dv →
∫

R3

ϕ(v)Q+(g∞, g∞)(v) dv.

On the other hand, for all ϕ ∈ C1
0 (R3), since |v · ∇ϕ(v)| ≤ |v|‖∇ϕ‖1, and the

second moment of g(v, τ ) is equal to unity, the convergence of d2+α(g(τ ), g∞) to
zero implies ∫

R3

v · ∇ϕ(v)g(v, τ ) dv →
∫

R3

v · ∇ϕ(v)g∞(v) dv.

Finally, for all ϕ ∈ C1
0 (R3) it holds∫

R3

g∞(v)v · ∇ϕ(v) dv + E(ϕ, Q(g∞, g∞)) = 0.

This shows that g∞ is a stationary solution to (2.8). �

Remark 3.2. (Comparisons to Previous Results). Let us repeat those parts
of Step 1 and 2 in previous theorem reformulate results in [Ref. 9, Sec. 6] and
[Ref. 11, Sec. 4] with our point of view. The main novelties are:

1. To recast the result as a strict contractivity of the distance d2+α along the
flow. More general contraction properties will be shown in next section.

2. The existence and uniqueness of the steady state, and thus of the HCS,
follow in a very elegant and straightforward way avoiding the eigenvalue
analysis of an integral operator related to Q+, used for the existence proof
of steady state in ref. 9. Nevertheless, they are intimately related since the
spectral gap of the linearized operator in ref. 9 is exactly the contractivity
constant in (3.2). Furthermore, our result can be considered as an easy
proof of a spectral gap estimate for the linearized operator.

3. Decay rates towards the steady state are then easily obtained by specializ-
ing one of the two solutions as the steady state. However, the information
of our theorem is much stronger since it gives the nonlinear stability of
the steady state and it measures the control between any two solutions. In
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fact, (3.6) in previous theorem can be recast into

d+

dτ
d2+α(ĝ(τ ), ĝ∞) ≤ −C(α, e)d2+α(ĝ(τ ), ĝ∞)

for all τ > 0 and all solutions corresponding to initial data in Theorem 3.1.
Therefore, d2+α(ĝ, ĝ∞) is the first known Liapunov functional, cf. ref. 4, to
our knowledge, for non-trivial steady states of inelastic Maxwell models.
Decay rates for more general initial data will be reviewed in next section.

Remark 3.3. (Related Works and Open Problems) Let us finally mention that
similar ideas were used in nonlinear diffusion and nonlinear friction equations
before in ref. 14 with the Euclidean Wasserstein distance. It is an open problem
to prove or disprove that the Euclidean Wasserstein distance, also called the
Tanaka functional by the kinetic community, is a strict contraction for this inelastic
Maxwell model. In the elastic case it is known to be a non-expansive contraction.(20)

As a simple corollary coming back to original variables using the time and
spatial changes of variables (2.3) and (2.6), we obtain the existence and uniqueness
of homogeneous cooling states (HCS) for the original Eq. (2.4).

Corollary 3.4. (Existence-Uniqueness of HCS) Eq. (1.1) has a unique homo-
geneous cooling state with unit mass and zero mean velocity given by

fhc(t) = θ
− 3

2
hc (t)g∞

(
θ

− 1
2

hc (t)v
)

where the temperature θhc(t) is given by (2.2) fixing any initial value θhc(0) > 0.
Moreover, all homogeneous cooling states of (1.1) are given in terms of g∞ by
means of (2.1).

4. HOMOGENEOUS COOLING STATES AND THE

ERNST-BRITO CONJECTURE

Few years ago Ernst and Brito,(15,16) by combining results on scaling solutions
and overpopulated high energy tails in inelastic hard sphere fluids and inelastic
Maxwell models with an old conjecture of Krook and Wu(5,18) on a special self-
similar solution of the elastic Boltzmann equation, named Bobylev, Krook and Wu
(BKW) mode, formulated a conjecture on the role of the homogeneous cooling
states. This conjecture reads:

(EBC1) The HCS should be attractors for large sets of initial data for large times
(see [Ref. 16, Sec. 4]).



636 Bisi et al.

(EBC2) The HCS should have overpopulated high energy tails. Hence, moments
of the HCS, M2r (g∞), are bounded if and only if r < rE B(e) where rE B(e)
is characterized by the unique solution to the equation

1 − e2

4
r = 1 − A(2r − 2, e) = 1 − 1

1 + r

[(
1 + e

2

)2r

+ 1 − (
1−e

2

)2r+2

1 − (
1−e

2

)2

]
.

(4.1)

This equation (see [Ref. 16, Eq. (3.13)]) for capturing the high energy tails
of the distribution function was also obtained in refs. 2, 3.

Later, Bobylev and Cercignani(9) and Bobylev, Cercignani and Toscani(11)

proved the first part of the Ernst-Brito conjecture (EBC1). More precisely, they
proved the convergence weakly as measures of any solution with finite energy
to (1.1) towards the HCS with the same initial density and mean velocity by
assuming the additional hypothesis that a moment of order 2 + ε is initially finite.
We will further improve the understanding of (EBC1) in Subsections 4.2 and
4.3 by reckoning an explicit decay rate towards HCS based on the contraction of
the metrics. This will imply that the self-similar profile is approached by general
initial conditions at an algebraic rate in time with explicit constants.

Concerning the second part of the Ernst-Brito conjecture (EBC2), Bobylev
and Cercignani(9) showed that this result is essentially true except for a finite num-
ber of restitution coefficients close to the elastic limit, e = 1, in which they have
more moments finite than the ones implied by (4.1). More precisely, they claimed
that if r < rE B(e), the moments of order 2r are finite and the converse is true for
“almost all” coefficients of restitution, see [Ref. 9, Lemma 8.1, Theorem 7.2]
for a detailed description of the result. Recently, these authors together with
Gamba(10,12) have found a gap in the argument leading to this exceptional set of
restitution coefficients and have corrected this result proving that the moments of
order 2r of the HCS are finite if and only if r < rE B(e).

Here in the next subsection, we will show using the contraction result that all
moments of the HCS similarity solution are bounded for r < rE B(e) and moreover
this implies a uniform in time control of suitable moments of the solutions of the
Cauchy problem.

4.1. Tails of the HCS and Moments of Solutions:

Second Part of EB Conjecture

We remark that to look for solutions to Eq. (4.1) that gives the optimal
exponent rE B(e) for bounded moments of the similarity solution is equivalent
to look for the value of αe such that C(αe, e) = 0. Indeed, 2rE B(e) = 2 + αe.
Therefore, taking into account our contraction result, Theorem 3.1, and the second
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part of the Ernst-Brito conjecture (EBC2) proved in ref. 9 and corrected in refs. 10,
12, we can draw the following conclusion proved in the next result for any fixed
value of the coefficient of restitution e: the flow of equation (1.1) is strictly
contractive in d2+α if and only if the moments of order 2 + α of the similarity
solution g∞ are bounded.

Theorem 4.1. (Boundedness of moments for the HCS.) If the condition

G(α, e) < 1 ⇐⇒ C(α, e) > 0 ⇐⇒ 2 + α < 2 rE B(e)

holds, then the distance d2+α is strictly contractive for initial data having equal
moments up to order 2 + [α], for α /∈ N, and 1 + α equal moments and bounded
2 + α moments whenever α ∈ N. Furthermore, this fact implies that the moments
of order 2 + α of the homogeneous cooling state g∞ are bounded.

Proof. This theorem follows the same lines as [Ref. 4, Theorem 3.2]. Thanks
to Lemma 2.1, moments are propagated, i.e., the 2 + α-th isotropic moment is
bounded, not uniformly in time, if the same moment is bounded initially.

Step 1: Case α ∈ N. We can repeat the same argument of Theorem 3.1, by
computing now the evolution of the distance with index 2 + α between any two
solutions allowing α ≥ 1. One proves the following assertion: given any natural
α ≥ 1, let ĝ1(0) and ĝ2(0) be two initial data to (2.11) with equal moments up to
order 1 + α and finite moments of order 2 + α, then d2+α(ĝ1(0), ĝ2(0)) < ∞ and

d2+α(ĝ1(τ ), ĝ2(τ )) ≤ d2+α(ĝ1(0), ĝ2(0))e−C(α,e)τ , (4.2)

for any τ ≥ 0.
Let us point out that (4.2) implies that moments of the solutions remain

equal up to order 1 + α, since initially they are equal, and thus, the distance
d2+α(ĝ1(τ ), ĝ2(τ )) < ∞, for all τ ≥ 0. Moreover, the contraction is strict if
C(α, e) > 0.

Now, we proceed by induction on α. We already know that the steady state g∞
has bounded second moments. Let us assume that α ≥ 1 and that g∞ has moments
bounded up to order 1 + α. Take the set Xα defined as the subset of P2+α(R3) with
equal moments to those of g∞ up to order 1 + α. This set is a complete metric space
endowed with the distance d2+α being a closed subset of P2+α(R3). Proceeding
as in the proof of Theorem 3.1, the flow map Tτ is a uniform contraction from
(Xα, d2+α) into itself with contraction constant less than 1 whenever C(α, e) is
positive. Therefore, Tτ has a unique steady state g ∈ Xα and thus, by uniqueness
of steady state in Xβ , for 0 < β < 1, we conclude g = g∞ ∈ (Xα, d2+α) and thus,
g∞ has finite moments of order 2 + α.

Step 2: Case α /∈ N. In the present case the decay (4.2) holds if the initial data
ĝ1(0) and ĝ2(0) have equal moments up to order 2 + [α]. Thanks to Step 1, g∞



638 Bisi et al.

Fig. 1. The functions G(α, e) for values α = 1, α = 2.7 and α = 3.

has bounded moments of order 2 + [α]. Take now the set Xα defined as the subset
of P2+α(R3) with equal moments to those of g∞ up to order 2 + [α]. Analogously
to Step 1, it can be shown that the flow map Tτ has a unique steady state in Xα ,
and consequently g∞ has finite moments of order 2 + α. �

In Figures 4 and 2, we show the largest root αe of C(α, e) = 0 in terms of
e, which corresponds to compute rE B(e) = 1 + αe

2 . In fact, taking into account
[Ref. 9, Theorem 7.2] and refs. 10, 12, we obtain the following corollary.

Fig. 2. The largest zero αe of C(α, e) = 0 ⇐⇒ G(α, e) = 1 as a function of e, for instance α0 =
2.81307, and thus, rE B (0) = 2.40653 by Newton-Raphson method.
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Corollary 4.2. (Optimality of the contraction result) The flow map for equa-
tion (1.1) is a strict contraction for the distance d2+α if and only if

G(α, e) < 1 ⇐⇒ C(α, e) > 0 ⇐⇒ 2 + α < 2rE B(e),

or equivalently if and only if the moments of order 2 + α of the homogeneous
cooling state g∞ are bounded.

We will now make use of these new contractive bounds to estimate uniformly
the moments of solutions of the Cauchy problem for certain initial data. This
is based on the observation that distances dm with m ∈ N, m ≥ 2, control the
difference of the moments of order m.

Theorem 4.3. (Uniform in time moment estimates.) Given an even m ∈ N

with 2 < m < 2rE B(e). Let g(v, τ ) be the solution to equation (2.8) for an initial
datum g0(v) having equal moments to those of g∞ up to order m − 1 and bounded
m-moments. Then the moments of order m of g(v, τ ) are uniformly bounded in
time. In particular, given an initial datum g0 with equal moments to those of g∞
up to third order, and fourth-order moment bounded, then the fourth moments of
the solution are uniformly bounded in time for all e.

Proof. We start with the following result extracted from similar arguments
in ref. 24. Let us fix η ∈ R

3 with |η| = 1 and λ ≥ 0. Let us denote by Dm f̂ the
differential tensor of order m of f̂ . Given two distributions g1, g2 with moments
of order m bounded and equal moments up to order m − 1, their Fourier transform
are m continuously differentiable and

Dm(ĝ1 − ĝ2)(0)(η, · · · , η) = lim
λ→0+

ĝ1(λη) − ĝ2(λη)

λm
.

Now, putting this together with the definition of dm , we get

|Dm(ĝ1 − ĝ2)(0)(η, · · · , η)| ≤ dm(ĝ1, ĝ2)

for all η ∈ R
3 with |η| = 1. Therefore, we have shown that given g1, g2 with

moments of order m bounded and equal moments up to order m − 1, we have∣∣∣∣
∫

R3

|v|m(g1 − g2) dv

∣∣∣∣ ≤ Cmdm(ĝ1, ĝ2). (4.3)

Applying previous estimate with g1 = g(τ ) and g2 = g∞, we deduce∣∣∣∣
∫

R3

|v|m(g(v, τ ) − g∞(v)) dv

∣∣∣∣ ≤ Cmdm(ĝ(τ ), ĝ∞),
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that together with (4.2), implies∣∣∣∣
∫

R3

|v|m(g(v, τ ) − g∞(v)) dv

∣∣∣∣ ≤ Cmdm(ĝ(0), ĝ∞)e−C(α,e)τ .

Finally, we conclude by using that the moment of order m of g∞ is bounded for
2 < m < 2rE B(e). Since rE B(e) > 2 for all e, we obtain the particular statement,
i.e., the uniform control on the fourth moment of solutions of the Cauchy problem
for all e. �

It is an open problem to get uniform in time estimates of the moments of
solutions for more general initial data.

4.2. Explicit Decay Rates Towards Self-Similarity: First Part

of the EB Conjecture

In this subsection, we plan to get rid of the assumption of equal second
moments in Theorem 3.1, in order to prove the exponential convergence of each
solution f (v, τ ) of Eq. (2.4) corresponding to a general initial datum, towards the
corresponding similarity solution fhc(τ ) in d2. Let us remark that neither Theorem
3.1 nor the results contained in ref. 11 give any decay rate in the case of d2. In
fact, Eq. (2.8) is a non-strict contraction for d2, i.e.,

d2(ĝ1(τ ), ĝ2(τ )) ≤ d2(ĝ1(0), ĝ2(0)) (4.4)

for any τ ≥ 0 and any ĝ1, ĝ2 solutions to (2.11) corresponding to initial data with
unit mass, zero mean velocity and second moment bounded.

In order to do this, let us consider the evolution of the pressure tensor for the
solutions f (v, τ ) of Eq. (2.4). For i 	= j the quantity

pi j (τ ) =
∫

R3

viv j f (v, τ ) dv

is governed by the equation

dpi j

dτ
= − (1 + e)(3 − e)

8
Epi j . (4.5)

If �̂(k, τ ) is defined as

�̂(k, τ ) =
{− 1

2

∑
i 	= j

pi j (τ )ki k j i f |k| ≤ 1

0 i f |k| > 1
, (4.6)

we will show that the contraction in d2+α of the non-isotropic part f̂ (τ ) − �̂(τ )
together with the decay of the pressure tensor of the solution towards the pressure
tensor of the HCS f̂hc is enough to ensure the convergence of the solution towards
the HCS in d2. In the proof we shall resort to the contraction in d2+α, α > 0,



Decay Rates in Probability Metrics Towards Homogeneous Cooling States 641

and thus, we need an additional assumption on the initial data, i.e., to have the
corresponding moment of order 2 + α finite. The following theorem can be also
obtained from, [Ref. 11, Sec. 5] but here we recast it as an estimate in d2 and we
work out the constants explicitly. We include the proof in the Appendix.

Theorem 4.4. (Decay result for general initial data.) Let f̂ (k, τ ) be the solution
of the time-scaled inelastic Maxwell equation (2.9) corresponding to the initial da-
tum f̂ (0) with unit mass, zero mean velocity such that d2+α( f̂ (0) − �̂(0), f̂hc(0)) <

∞, where f̂hc denotes the corresponding self-similar solution. Then there exists
C1 > 0 such that

d2+α( f̂ (τ ) − �̂(τ ), f̂hc(τ )) ≤
[
2d2+α( f̂ (0) − �̂(0), f̂hc(0)) + C1

]
e−(1−A(α,e))Eτ

(4.7)
for any 0 < α < 1.

Next Lemma will be useful to relate different metrics.

Lemma 4.5. (Interpolation of metrics.) Let q > p, | f̂ | ≤ 1, |ĝ| ≤ 1, then

dp( f̂ , ĝ) ≤ 2

(
q − p

2p

)p/q q

q − p

[
dq ( f̂ , ĝ)

]p/q
= C p,q

[
dq ( f̂ , ĝ)

]p/q
. (4.8)

Proof. Since q > p, for any R > 0 it holds

dp( f̂ , ĝ) = sup
k∈R3

| f̂ (k) − ĝ(k)|
|k|p

≤ sup
|k|≤R

| f̂ (k) − ĝ(k)|
|k|p

+ sup
|k|>R

| f̂ (k) − ĝ(k)|
|k|p

≤ sup
|k|≤R

| f̂ (k) − ĝ(k)|
|k|q Rq−p + 2

R p
≤ dq ( f̂ , ĝ)Rq−p + 2

R p
. (4.9)

Optimizing the function y(R) = ARq−p + 2
R p (with A > 0) over R con-

cludes. �

From Theorem 4.4 and Lemma 4.5 it follows the exponential decay of the distance
d2( f̂ (τ ), f̂hc(τ )).

Theorem 4.6. (Decay rate towards self-similarity for general initial data.)
Let f̂ (k, τ ) be the solution of the time-scaled inelastic Maxwell equation (2.9)
corresponding to the initial datum f̂ (0) with unit mass, zero mean velocity and
second moment bounded. Then there exist explicit constants C1, C2 > 0, depend-
ing on second moments of the initial data, such that
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d2( f̂ (τ ), f̂hc(τ )) ≤ C2,2+α

{ [
2d2+α( f̂ (0) − �̂(0), f̂hc(0)) + C1

]

× exp {−(1 − A(α, e))Eτ }
} 2

2+α

+ C2 exp

{
−3 − e

1 − e
τ

}
. (4.10)

Proof. The distance d2( f̂ (τ ), f̂hc(τ )) can be split as

d2( f̂ (τ ), f̂hc(τ )) ≤ sup
k∈R3

| f̂ (k, τ ) − �̂(k, τ ) − f̂hc(k, τ )|
|k|2 + sup

k∈R3

|�̂(k, τ )|
|k|2

= d2( f̂ (τ ) − �̂(τ ), f̂hc(τ )) + sup
|k|≤1

|�̂(k, τ )|
|k|2 . (4.11)

By applying Lemma 4.5 with p = 2 and q = 2 + α,

d2( f̂ (τ ) − �̂(τ ), f̂hc(τ )) ≤ C2,2+α

[
d2+α( f̂ (τ ) − �̂(τ ), f̂hc(τ ))

] 2
2+α

,

hence from Theorem 4.4 we get the first term in the right-hand side of (4.10).
Owing to the definition of �̂(k, τ ), the last term of (4.11) can be estimated by
means of the law (4.5) which describes the evolution of the pressure tensor:

sup
|k|≤1

|�̂(k, τ )|
|k|2 ≤ 1

2

(
max
i 	= j

|pi j (τ )|
)

sup
|k|≤1


 1

|k|2
∑
i 	= j

|ki k j |



≤
(

max
i 	= j

|pi j (0)|
)

exp

{
− (1 + e)(3 − e)

8
Eτ

}
and this concludes the proof. �

Remark 4.7. (Exponential decay result in scaled variables). Given ĝ a solution
to (2.11) corresponding to the initial value ĝ(0) with unit mass, zero mean velocity
and bounded second moment, then

d2(ĝ(τ ), ĝ∞) ≤ C2,2+α

θ0

[
2d2+α(ĝ(0) − �̂(0), ĝ∞) + C1

]2/(2+α)

× exp

{
− 2

2 + α
C(α, e)τ

}
+ C2

θ0
exp

{
−1 + e

1 − e
τ

}
.

(4.12)

This is a direct consequence of ĝ(k, τ ) = f̂ (kθ− 1
2 (τ ), τ ), the scaling property

of d2, d2(ĝ, ĝ∞) = d2( f̂ , f̂hc)θ−1(τ ), and the evolution of the temperature (2.5),
θ (τ ) = θ0e−2τ .

Remark 4.8. (Algebraic decay result in original variables). The evolution equa-

tion (2.2) yields θ (t) = (θ
− 1

2
o + 1−e2

8 Bt)−2, hence time scaling (2.3) is nothing but
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τ = log[1 + (B/(Eθ
−1/2
0 ))t]. Therefore, to any exponential decay in the variable

τ there corresponds an algebraic decay in t. For instance, from Theorem 4.6 we
get the following estimate for the convergence of each solution f (v, t) towards
the homogeneous cooling state fhc(t):

d2( f̂ (t), f̂hc(t)) ≤ C2,2+α

[
2d2+α( f̂ (0) − �̂(0), f̂hc(0)) + C1

]2/(2+α)

×

1 + B

Eθ
− 1

2
0

t




−(2(1−A(α,e))E)/(2+α)

+ C2


1 + B

Eθ
− 1

2
0

t




−(3−e)/(1−e)

4.3. Decay Rates in “Physical Space”: Convergence in Euclidean

Wasserstein Distance

A natural question on the decay rates is if one can extend the interpolation
ideas to deduce decay rates in classical Sobolev spaces and in L1, that is, directly
in the physical space. These results were accomplished in ref. 4, for the heat bath
case, based on the ideas of ref. 13. In fact, it is a general principle that assuming
one has uniform in time control of moments and uniform in time propagation of
smoothness, then once you have proved an exponential decay in d2, you obtain the
same decay with almost the same exponent in all Sobolev spaces and in L1.

Summarizing, the proof of such a result requires the knowledge of the eventual
propagation of moments and regularity for the solution to Eq. (2.8). We have shown
the uniform in time propagation of moments, at least for particular initial data,
in Subsection 4.1. Unlikely, it is not clear that the solution to Eq. (2.8) satisfies
uniform in time regularity estimates.

Nevertheless, we can show using only the uniform in time bound of the fourth
moment proven in Theorem 4.3, that the Euclidean Wasserstein distance between
certain solutions to (2.11) and g∞ converges exponentially to zero as t → ∞.

Let us briefly remind that the Euclidean Wasserstein distance, also known as
Tanaka functional(20) in the kinetic community, is defined as

W2(g0, g1) = inf

{∫
R3×R3

|v − w|2dγ (v,w); γ ∈ �(g0, g1)

}1/2

; (4.13)

here �(g0, g1) is the set of probability measures on R
3 × R

3 having marginals
g0 and g1. This metric is well defined in P2(R3) and is equivalent to the weak∗

convergence as measures. In fact, it was proven in ref. 21, that both d2 and W2

give the same weak∗ uniformity in the set

Sα,M =
{

g ∈ P2(R3) such that
∫

R3

|v|2+αg(v) dv ≤ M

}
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with α, M > 0. In order to explicitly write the decay rate in W2, we need to review
and introduce other probability metrics used in refs. 17, 21:

a) Prokhorov’s distance �(g0, g1): for δ ≥ 0 and U ⊂ R
3, we define

U δ = {v ∈ R
3; d(v, U ) < δ}, U δ] = {v ∈ R

3; d(v, U ) ≤ δ}
where d(v, U ) = inf{‖v − w‖, w ∈ U }. Let

σ (g0, g1) = inf{ε > 0 such that g0(A) ≤ g1(Aε) + ε for all closed A ⊂ R
3};

we set �(g0, g1) = max{σ (g0, g1), σ (g1, g0)}. Here, we have denoted,
abusing on the notation, the measure and its corresponding density, if any,
by the same symbol.

b) the (Cm)∗ distance ‖g0 − g1‖∗
m : for m ≥ 1, let Cm(R3) be the set of

m-times continuously differentiable functions, endowed with its natural
norm ‖ · ‖m . Then, we consider its dual norm:

‖g0 − g1‖∗
m = sup

{∣∣∣∣
∫

R3

ϕ(v)(g0(v) − g1(v)) dv

∣∣∣∣; ϕ ∈ Cm, ‖ϕ‖m ≤ 1

}
.

The following Lemma just summarizes the results proved in refs. 17, 21.

Lemma 4.9. Relation between probability metrics. Given g0, g1 ∈ Sα,M , then
there exist explicit constants C1 and C2 such that

W 2
2 (g0, g1) ≤ (2M + 8)�(g0, g1)

α
α+2 + 4�(g0, g1)2,

�(g0, g1) ≤ max
{

C1[‖g0 − g1‖∗
6]

1
7 , ‖g0 − g1‖∗

6

}
and

‖g0 − g1‖∗
6 ≤ C2

(
max

{∫
R3

|v|2g0 dv,

∫
R3

|v|2g1 dv

}) 4
7

d2(g0, g1)
1
3 .

With this lemma at hand and the uniform in time propagation of the fourth
moment proved in Theorem 4.3, we deduce.

Corollary 4.10. (Exponential Decay of the Euclidean Wasserstein distance).
Given an initial datum ĝ0 with unit mass, zero mean velocity, unit pressure tensor
and fourth-order moment bounded. Then, there exist computable positive constants
Cw and λw such that

W2(g(τ ), g∞) ≤ Cwe−λwτ ,

for all τ ≥ 0.
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5. BEYOND ERNST-BRITO CONJECTURE

We will study here some further properties of the self-similar solution to Eq.
(2.4). In particular, we will derive its precise decay in velocity as |v| → ∞, at
least when the root α = αe where G(α, e) = 1 is less than 2.

Let us choose the initial value like in Theorem 3.1, namely with unit pressure
tensor. Its Fourier transform can be written as

f̂0(k) = 1 − 1

2
|k|2 + �0(k)

with the rest �0(k) = o(|k|2). Likewise, since the momentum of the solution to
Eq. (2.4) is identically equal to zero, and the temperature θ (τ ) evolves according
to (2.5), we can write, at any subsequent time τ > 0

f̂ (k, τ ) = 1 − 1

2
θ (τ )|k|2 + �(k, τ )

with the rest �(k, τ ) = o(|k|2). Properties in |k| = 0 of the remainder � can be
obtained by looking at the evolution of

Dα(|k|, τ ) = f̂ (k, τ ) − 1 + 1
2θ (τ )|k|2

|k|2+α
.

Theorem 5.1. (Non-strict contraction of the rest near zero). Let ĝ(k, τ ) be the
solution of the time-scaled inelastic Maxwell equation (2.11) corresponding to the
initial datum f̂ (0) with unit mass, zero mean velocity and unit pressure tensor.
Suppose in addition that Dα(|k|, τ = 0) ≤ C for some value 0 < α < 2. Then, if
G(α, e) ≤ 1, for all τ > 0 it holds

lim
δ→0

sup
|k|≤δ

|ĝ(k, τ ) − 1 + 1
2 |k|2|

|k|2+α
≤ lim

δ→0
sup
|k|≤δ

| f̂0(k) − 1 + 1
2 |k|2|

|k|2+α
.

Proof. Direct computations which use expressions (2.10) give

E

4π

∫
S2

(|k+|2 + |k−|2 − |k|2) dn = −2|k|2.

Set |k| < 1. Considering that

∂
(
1 − 1

2θ (τ )|k|2)
∂τ

= −1

2
|k|2 dθ

dτ
= θ (τ )|k|2,

we obtain

∂
(
1 − 1

2θ (τ )|k|2)
∂τ

= E

4π

∫
S2

{(
1 − θ (τ )

2
|k+|2

)(
1 − θ (τ )

2
|k−|2

)
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−
(

1 − θ (τ )

2
|k|2

)}
dn − E

16π
θ2(τ )

∫
S2

|k+|2|k−|2dn.

Proceeding now as in the proof of Theorem 3.1, we have∣∣∣∣∂ Dα(|k|, τ )

∂τ
+ E Dα(|k|, τ )

∣∣∣∣ ≤ E

4
θ2(τ )|k|2−α

+ E

4π

∫
S2

[ |k−|2+α

|k|2+α
|Dα(|k−|, τ )| + |k+|2+α

|k|2+α
|Dα(|k+|, τ )|

]
dn. (5.1)

If |k| ≤ δ < 1, and

Dα(τ ) = sup
|k|≤δ

|Dα(|k|, τ )|,

(5.1) implies∣∣∣∣∂ Dα(|k|, τ )

∂τ
+ E Dα(|k|, τ )

∣∣∣∣ ≤ E

4
θ2(τ )δ2−α + E A(α, e)Dα(τ ).

This is equivalent to∣∣∣∣∂(Dα(|k|, τ )eEτ )

∂τ

∣∣∣∣ ≤ E

4
θ2(τ )eEτ δ2−α + E A(α, e)Dα(τ )eEτ .

Integrating from 0 to τ we get

|Dα(|k|, τ )|eEτ ≤ |Dα(|k|, 0)| +
∫ τ

0

(
E

4
θ2(t)eEtδ2−α + E A(α, e)Dα(t)eEt

)
dt.

Hence, if H (τ ) = Dα(τ )eEτ ,

H (τ ) ≤ H (0) +
∫ τ

0

E

4
θ2(t)eEtδ2−αdt +

∫ τ

0
E A(α, e)H (t) dt.

Now, by applying the generalized Gronwall lemma we obtain

H (τ ) ≤ H (0)eE A(α,e)τ + δ2−αη(τ ),

where η(τ ) is bounded for all finite τ . Thus we have

Dα(τ ) ≤ Dα(0) exp{−E(1 − A(α, e))τ } + δ2−αη(τ ) exp{−Eτ }.
If α < 2, letting δ going to 0, we obtain

lim
δ→0

sup
|k|≤δ

| f̂ (k, τ ) − 1 + 1
2θ (τ )|k|2|

|k|2+α
≤ lim

δ→0
sup
|k|≤δ

| f̂0(k) − 1 + 1
2 |k|2|

|k|2+α
e−E(1−A(α,e))τ .
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Since ĝ(k, τ ) = f̂

(
k

θ
1
2 (τ )

, τ

)
, we obtain for ĝ the bound

lim
δ→0

sup
|k|≤δ

|ĝ(k, τ ) − 1 + 1
2 |k|2|

|k|2+α
≤ lim

δ→0
sup
|k|≤δ

| f̂0(k) − 1 + 1
2 |k|2|

|k|2+α
e−C(α,e)τ ,

where C(α, e) is defined in (3.7). Thus, if α < 2, and G(α, e) ≤ 1, the theorem is
proved. �

As a consequence of Theorem 5.1, letting τ → ∞, we obtain for the station-
ary state

lim
δ→0

sup
|k|≤δ

|ĝ∞(|k|) − 1 + 1
2 |k|2|

|k|2+α
≤ C.

Thus, if αe < 2, we can write

ĝ∞(|k|) = 1 − 1

2
|k|2 + �(k), (5.2)

and the remainder �(k) is such that

lim
|k|→0

�(k)

|k|2+p
= 0, p < αe.

As showed by Bobylev and Cercignani,(9) in scaled variables the self-similar
solution satisfies the bounds

exp{−|k|2} ≤ |ĝ∞(|k|)| ≤ exp{−|k|}(1 + |k|). (5.3)

In particular, the upper bound in (5.3) guarantees that the steady state g∞(v) is
smooth. In fact, by introducing the Sobolev space norms ‖ · ‖Hr ( R3), r ≥ 0 by

‖ f ‖2
Hr (R3) =

∫
R3

|k|2r | f̂ (k)|2dk,

one sees at once that, for all r > 0,

‖g∞‖2
Hr (R3) ≤

∫
R3

|k|2r (1 + |k|)2 exp{−2|k|} dk < ∞.

Expansion (5.2), coupled with the regularity of the steady state, allows to
apply the main theorem in Wong,(22) to conclude that the steady state g∞(|v|) is
given, for sufficiently large |v|, by the formula

g∞(|v|) = L(2)|v|−(5+αe) + δ(|v|),
where L(2) = 25/2�[5/2]/�[−1], and the remainder δ is such that

δ(|v|) = o(|v|6) as |v| → ∞.
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Remark 5.2. (Overpopulated tail behavior in velocity space). This also solves
a question posed by Ernst and Brito in refs. 15, 16 which, starting in R

d from an
expansion of the type

ĝ∞(|k|) = 1 − 1

2
|k|2 +

[p]∑
l=2

Cl |k|2l + B|k|2p

arrived to the formal conclusion that

g∞(|v|) ∼= |v|−(d+2p). (5.4)

In [Ref. 9, Sec. 7], Bobylev and Cercignani outlined that conclusion (5.4), while
quite probable, was difficult to prove. For enough regular functions g∞, however,
this conclusion is contained in ref. 22.

APPENDIX: PROOF OF THEOREM 4.4

Proof. Obviously it holds

d2+α( f̂ (τ ) − �̂(τ ), f̂hc(τ )) ≤ ‖h(k, τ )χ|k|≤1‖∞ + ‖h(k, τ )χ|k|>1‖∞ (A.1)

where χK denotes the characteristic function of the set K and h(k, τ ) denotes

h(k, τ ) = f̂ (k, τ ) − �̂(k, τ ) − f̂hc(k, τ )

|k|2+α
.

At first, we focus our attention on the region |k| ≤ 1. Since both f̂ (k, τ ) and
f̂hc(k, τ ) are solutions to the Boltzmann equation (2.9) we have

∂

∂τ

(
f̂ (k, τ ) − �̂(k, τ ) − f̂hc(k, τ )

)
+ E

(
f̂ (k, τ ) − �̂(k, τ ) − f̂hc(k, τ )

)

= E

4π

∫
S2

{
f̂ (k+)

[
f̂ (k−) − f̂hc(k−)

]
+ f̂hc(k−)

[
f̂ (k+) − f̂hc(k+)

]}
dn

−∂�̂(k, τ )

∂τ
− E �̂(k, τ ) . (A.2)

Bearing in mind the definition of �̂(k, τ ) given in (4.6) and the evolution law for
the pressure tensor (4.5), we obtain

−∂�̂(k, τ )

∂τ
− E �̂(k, τ ) = 1

2
E
∑
i 	= j

pi j (τ )ki k j

[
1 − (1 + e)(3 − e)

8

]
. (A.3)
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So, if we set F̂(k, τ ) = f̂ (k, τ ) − �̂(k, τ ) − f̂hc(k, τ ), by substituting (A.3) into
the equality (A.2) we find

∂ F̂(k, τ )

∂τ
+ E F̂(k, τ ) = E

4π

∫
S2

[
f̂ (k+)F̂(k−) + f̂hc(k−)F̂(k+)

]
dn

+ E

2

∑
i 	= j

pi j (τ )ki k j

[
1 − (1 + e)(3 − e)

8

]

+ E

4π

∫
S2

[
f̂ (k+)�̂(k−) + f̂hc(k−)�̂(k+)

]
dn .(A.4)

Since

f̂ (k, τ ) = 1 − 1

2

3∑
i, j=1

pi j (τ )ki k j + o(k2)

while the similarity solution fhc(v, τ ) is such that

f̂hc(k, τ ) = 1 − 1

2

3∑
i=1

pii (τ )k2
i + o(k2) ,

then the function in the last integral of (A.4) takes the form∫
S2

[
f̂ (k+)�̂(k−) + f̂hc(k−)�̂(k+)

]
dn =

∫
S2

[
�̂(k−) + �̂(k+)

]
dn

−
∫

S2


�̂(k−)

1

2

3∑
i, j=1

pi j (τ )k+
i k+

j + �̂(k+)
1

2

3∑
i=1

pii (τ )(k−
i )2 + o(k2)


 dn.(A.5)

By resorting to the definitions (4.6) and (2.10), simple computations give

E

4π

∫
S2

[
�̂(k−) + �̂(k+)

]
dn = − E

2

∑
i 	= j

pi j (τ )

[(
1 + e

4

)2

+
(

3 − e

4

)2
]

ki k j .

Concerning the last integral in (A.5), there exists k̄ such that, if we denote

p̄i j (τ ) = ∂2

∂ki∂k j

∫
R3

f (v, τ )e−ik·vdv

∣∣∣∣
k=k̄

we have

∫
S2


�̂(k−)

1

2

3∑
i, j=1

pi j (τ )k+
i k+

j + �̂(k+)
1

2

3∑
i=1

pii (τ )(k−
i )2 + o(k2)


 dn
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=
∫

S2


�̂(k−)

1

2

3∑
i, j=1

p̄i j (τ )k+
i k+

j + �̂(k+)
1

2

3∑
i=1

p̄i i (τ )(k−
i )2


 dn .

At the end, coming back to Eq. (A.4) we obtain

∂ F̂(k, τ )

∂t
+ E F̂(k, τ ) = E

4π

∫
S2

[
f̂ (k+)F̂(k−) + f̂hc(k−)F̂(k+)

]
dn

− E

4π

∫
S2


�̂(k−)

1

2

3∑
i, j=1

p̄i j (τ )k+
i k+

j + �̂(k+)
1

2

3∑
i=1

p̄i i (τ )(k−
i )2


 dn. (A.6)

From the definition of �̂ it follows that the last integral contains only terms of
order |k|4. Moreover, for each i, j the term | p̄i j (τ )| is bounded uniformly in time
by the initial temperature. Therefore∣∣∣∣∣∣�̂(k−)

1

2

3∑
i, j=1

p̄i j (τ )k+
i k+

j

∣∣∣∣∣∣ ≤ 1

2

∑
i 	= j

|pi j (τ )‖k−
i k−

j |1

2
θ0

3∑
i, j=1

|k+
i k+

j |

≤ θ0

4


∑

i 	= j

|k−
i k−

j |



 3∑

i, j=1

|k+
i k+

j |

 (max

i 	= j
|pi j (0)|) exp

(
− (1 + e)(3 − e)

8
Eτ

)
.

Straightforward estimates show∣∣∣∣∣∣�̂(k−)
1

2

3∑
i, j=1

p̄i j (τ )k+
i k+

j

∣∣∣∣∣∣ ≤ 3

2
|k|4θ0(max

i 	= j
|pi j (0)|) exp

(
− (1 + e)(3 − e)

8
Eτ

)

and∣∣∣∣∣�̂(k+)
1

2

3∑
i=1

p̄i i (τ )(k−
i )2

∣∣∣∣∣ ≤ 1

2
|k|4θ0(max

i 	= j
|pi j (0)|) exp

(
− (1 + e)(3 − e)

8
Eτ

)
that together with (A.6) imply that, for |k| ≤ 1,∣∣∣∣∣ ∂

∂τ

F̂(k, τ )

|k|2+α
+ E

F̂(k, τ )

|k|2+α

∣∣∣∣∣ ≤ E A(α, e)

(
sup
|k|≤1

F̂(k, τ )

|k|2+α

)

+2Eθ0(max
i 	= j

|pi j (0)|)|k|2−α exp

{
− (1 + e)(3 − e)

8
Eτ

}
.

Since h(k, τ ) = F̂(k, τ )/|k|2+α , Eq. (A.7) implies∣∣∣∣ ∂

∂τ
(h(k, τ )eEτ )

∣∣∣∣ ≤ E A(α, e)‖h(k, τ )χ|k|≤1‖∞eEτ

+ C exp

{[
1 − (1 + e)(3 − e)

8

]
E τ

}
. (A.7)
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Integrating from 0 to τ , taking the supremum over k such that |k| ≤ 1 and setting
z(τ ) = ‖h(k, τ )χ|k|≤1‖∞eEτ we have

z(τ ) ≤ H (τ ) + E A(α, e)
∫ τ

0
z(s)ds

where

H (τ ) = ‖h(k, 0)χ|k|≤1‖∞ + C

∫ τ

0
exp

{[
1 − (1 + e)(3 − e)

8

]
Es

}
ds.

Using the generalized Gronwall lemma, we get

z(τ ) ≤ eE A(α,e)τ

{
z(0) + C

∫ τ

0
e
[
(1− (1+e)(3−e)

8 −A(α,e))Es
]
ds

}
. (A.8)

For α = 0 we have (1+e)(3−e)
8 + A(o, e) = 1 + (e+1)2

8 > 1, so we can choose ᾱ close
to zero in such a way that for 0 < α ≤ ᾱ

(1 + e)(3 − e)

8
+ A(α, e) ≥ 1 + (e + 1)2

16
.

In this interval ∫ τ

0
exp

[(
1 − (1 + e)(3 − e)

8
− A(α, e)

)
Es

]
ds

≤
∫ τ

0
exp

(
− 1 + e

2(1 − e)
s

)
ds ≤ 2(1 − e)

(1 + e)
.

Substituting into (A.8) and reminding the definition of z, we get

‖h(k, τ )χ|k|≤1‖∞ ≤
[
‖h(k, 0)χ|k|≤1‖∞ + 2C(1 − e)

1 + e

]
e−E(1−A(α,e))τ . (A.9)

As far as the region in which |k| > 1 is concerned, by means of analogous but
much easier (since �̂ ≡ 0) calculations we obtain the estimate

‖h(k, τ )χ|k|≤1‖∞ ≤ ‖h(k, 0)χ|k|>1‖∞ > e−E(1−A(α,e))τ . (A.10)

By inserting (A.9) and (A.10) into (A.1), the sought inequality (4.7) follows. �
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